Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
1.
J Nat Prod ; 87(4): 1171-1178, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38557026

RESUMO

The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.


Assuntos
Aspergillus nidulans , Aspergillus , Dicetopiperazinas , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Aspergillus/enzimologia , Aspergillus/química , Estrutura Molecular , Hidroxilação , Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Especificidade por Substrato , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Flavinas/metabolismo
2.
J Am Chem Soc ; 146(14): 9614-9622, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545685

RESUMO

Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.


Assuntos
Aspergillus nidulans , Produtos Biológicos , Glicosiltransferases/metabolismo , Metaboloma , Espectrometria de Massas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glicosídeos , Família Multigênica
3.
Fungal Genet Biol ; 171: 103877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447800

RESUMO

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Animais , Humanos , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro , Quitina/genética
4.
Sci Adv ; 10(8): eadk7416, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381828

RESUMO

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.


Assuntos
Aspergillus nidulans , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Esqualeno , Terpenos/metabolismo
5.
Mar Drugs ; 21(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38132949

RESUMO

Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A-E (3-7), were discovered via heterologous expression of a silent BGC (labd) in Aspergillus nidulans. Their structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as electronic circular dichroism (ECD) calculations. These labdanes belong to four skeleton types, and talarobicin B (4) is the first 3,18-dinor-2,3:4,18-diseco-labdane diterpene with the cleavage of the C2-C3 bond in ring A and the decarboxylation at C-3 and C-18. Talarobicin B (4) represents the key intermediate in the biosynthesis of penioxalicin and compound 13. The combinatorial heterologous expression and feeding experiments revealed that the cytochrome P450 enzymes LabdC, LabdE, and LabdF were responsible for catalyzing various chemical reactions, such as oxidation, decarboxylation, and methylation. All of the compounds are noncytotoxic, and compounds 2 and 8 displayed inhibitory effects against methicillin-resistant coagulase-negative staphylococci (MRCNS) and Bacillus cereus.


Assuntos
Aspergillus nidulans , Diterpenos , Talaromyces , Talaromyces/metabolismo , Diterpenos/química , Sistema Enzimático do Citocromo P-450 , Espectroscopia de Ressonância Magnética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Estrutura Molecular
6.
mSphere ; 8(6): e0054923, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37971274

RESUMO

IMPORTANCE: Transient receptor potential (TRP) ion channels are evolutionarily conserved integral membrane proteins with non-selective ion permeability, and they are widely distributed in mammals and single-cell yeast and serve as crucial mediators of sensory signals. However, the relevant information concerning TRP channels in Aspergillus nidulans remains inadequately understood. In this study, by gene deletion, green fluorescent protein tagging, and cytosolic Ca2+ transient monitoring techniques, the biological functions of three potential TRP channels (TrpA, TrpB, and TrpC) have been explored for which they play distinct and multiple roles in hyphal growth, conidiation, responsiveness to external stress, and regulation of intracellular Ca2+ homeostasis. The findings of this study on the functions of potential TRP channels in A. nidulans may serve as a valuable reference for understanding the roles of TRP homologs in industrial or medical strains of Aspergillus, as well as in other filamentous fungi.


Assuntos
Aspergillus nidulans , Canais de Potencial de Receptor Transitório , Animais , Sinalização do Cálcio/fisiologia , Aspergillus nidulans/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Mamíferos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37973298

RESUMO

Glyphosate-based herbicides (GBH) are the most used pesticides worldwide. This widespread dissemination raises the question of non-target effects on a wide range of organisms, including soil micro-organisms. Despite a large body of scientific studies reporting the harmful effects of GBHs, the health and environmental safety of glyphosate and its commercial formulations remains controversial. In particular, contradictory results have been obtained on the possible genotoxicity of these herbicides depending on the organisms or biological systems tested, the modes and durations of exposure and the sensitivity of the detection technique used. We previously showed that the well-characterized soil filamentous fungus Aspergillus nidulans was highly affected by a commercial GBH formulation containing 450 g/L of glyphosate (R450), even when used at doses far below the agricultural application rate. In the present study, we analysed the possible mutagenicity of R450 in A. nidulans by screening for specific mutants after different modes of exposure to the herbicide. R450 was found to exert a mutagenic effect only after repeated exposure during growth on agar-medium, and depending on the metabolic status of the tested strain. The nature of some mutants and their ability to tolerate the herbicide better than did the wild-type strain suggested that their emergence may reflect an adaptive response of the fungus to offset the herbicide effects. The use of a non-selective molecular approach, the quantitative random amplified polymorphic DNA (RAPD-qPCR), showed that R450 could also exert a mutagenic effect after a one-shot overnight exposure during growth in liquid culture. However, this effect was subtle and no longer detectable when the fungus had previously been repeatedly exposed to the herbicide on a solid medium. This indicated an elevation of the sensitivity threshold of A. nidulans to the R450 mutagenicity, and thus confirmed the adaptive capacity of the fungus to the herbicide.


Assuntos
Aspergillus nidulans , Herbicidas , Solo , Mutagênicos/farmacologia , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Herbicidas/toxicidade , Técnica de Amplificação ao Acaso de DNA Polimórfico
8.
Fungal Genet Biol ; 169: 103842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805121

RESUMO

The calF7 mutation in Aspergillus nidulans causes hypersensitivity to the cell wall compromising agents Calcofluor White (CFW) and Congo Red. In this research we demonstrate that the calF7 mutation resides in gene AN2880, encoding a predicted member of the OSCA/TMEM63 family of transmembrane glycoproteins. Those members of the family whose physiological functions have been investigated have been shown to act as mechanosensitive calcium transport channels. Deletion of AN2880 replicates the CFW hypersensitivity phenotype. Separately, we show that CFW hypersensitivity of calF deletion strains can be overcome by inclusion of elevated levels of extracellular calcium ions in the growth medium, and, correspondingly, wild type strains grown in media deficient in calcium ions are no longer resistant to CFW. These observations support a model in which accommodation to at least some forms of cell wall stress is mediated by a calcium ion signaling system in which the AN2880 gene product plays a role. The genetic lesion in calF7 is predicted to result in a glycine-to-arginine substitution at position 638 of the 945-residue CalF protein in a region of the RSN1_7TM domain that is highly conserved amongst filamentous fungi. Homology modeling predicts that the consequence of a G638R substitution is to structurally occlude the principal conductance pore in the protein. GFP-tagged wild type CalF localizes principally to the Spitzenkörper and the plasma membrane at growing tips and forming septa. However, both septation and hyphal morphology appear to be normal in calF7 and AN2880 deletion strains, indicating that any role played by CalF in normal hyphal growth and cytokinesis is dispensable.


Assuntos
Aspergillus nidulans , Canais de Cálcio , Canais de Cálcio/metabolismo , Aspergillus nidulans/metabolismo , Cálcio/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Íons/metabolismo , Proteínas Fúngicas/metabolismo
9.
Biol Futur ; 74(3): 337-346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37814124

RESUMO

Basic leucine zipper (bZIP) transcription factors are crucial components of differentiation, cellular homeostasis and the environmental stress defense of eukaryotes. In this work, we further studied the consequence of gene deletion and overexpression of two bZIP transcription factors, NapA and RsmA, on superoxide production, mitochondrial morphology and hyphal diameter of Aspergillus nidulans. We have found that reactive oxygen species production was influenced by both gene deletion and overexpression of napA under tert-butylhydroperoxide (tBOOH) elicited oxidative stress. Furthermore, gene expression of napA negatively correlated with mitochondrial volumetric ratio as well as sterigmatocystin production of A. nidulans. High rsmA expression was accompanied with elevated relative superoxide ratio in the second hyphal compartment. A negative correlation between the expression of rsmA and catalase enzyme activity or mitochondrial volumetric ratio was also confirmed by statistical analysis. Hyphal diameter was independent on either rsmA and napA expression as well as 0.2 mM tBOOH treatment.


Assuntos
Aspergillus nidulans , Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Superóxidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
10.
mBio ; 14(5): e0184023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37707170

RESUMO

IMPORTANCE: Filamentous fungi produce myriads of asexual spores, which are the main reproductive particles that act as infectious or allergenic agents. Although the serial of asexual sporogenesis is coordinated by various genetic regulators, there remain uncharacterized transcription factors in Aspergillus. To understand the underlying mechanism of spore formation, integrity, and viability, we have performed comparative transcriptomic analyses on three Aspergillus species and found a spore-specific transcription factor, SscA. SscA has a major role in conidial formation, maturation and dormancy, and germination in Aspergillus nidulans. Functional studies indicate that SscA coordinates conidial wall integrity, amino acid production, and secondary metabolism in A. nidulans conidia. Furthermore, the roles of SscA are conserved in other Aspergillus species. Our findings that the SscA has broad functions in Aspergillus conidia will help to understand the conidiogenesis of Aspergillus species.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica
11.
Fungal Biol ; 127(7-8): 1198-1208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495309

RESUMO

In addition to their role in the breakdown of H2O2, some peroxiredoxins (Prxs) have chaperone and H2O2 sensing functions. Acting as an H2O2 sensor, Prx Gpx3 transfers the oxidant signal to the transcription factor Yap1, involved in the antioxidant response in Saccharomyces cerevisiae. We have shown that Aspergillus nidulans Yap1 ortholog NapA is necessary for the antioxidant response, the utilization of arabinose, fructose and ethanol, and for proper development. To address the Prx roles in these processes, we generated and characterized mutants lacking peroxiredoxins PrxA, PrxB, PrxC, or TpxC. Our results show that the elimination of peroxiredoxins PrxC or TpxC does not produce any distinguishable phenotype. In contrast, the elimination of atypical 2-cysteine peroxiredoxins PrxA and PrxB produce different mutant phenotypes. ΔprxA, ΔnapA and ΔprxA ΔnapA mutants are equally sensitive to H2O2 and menadione, while PrxB is dispensable for this. However, the sensitivity of ΔprxA and ΔprxA ΔnapA mutants is increased by the lack of PrxB. Moreover, PrxB is required for arabinose and ethanol utilization and fruiting body cell wall pigmentation. PrxA expression is partially independent of NapA, and the replacement of peroxidatic cysteine 61 by serine (C61S) is enough to cause oxidative stress sensitivity and prevent NapA nuclear accumulation in response to H2O2, indicating its critical role in H2O2 sensing. Our results show that despite their high similarity, PrxA and PrxB play differential roles in Aspergillus nidulans antioxidant response, carbon utilization and development.


Assuntos
Antioxidantes , Aspergillus nidulans , Antioxidantes/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Peróxido de Hidrogênio/metabolismo , Cisteína/metabolismo , Arabinose , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etanol , Carbono , Oxirredução
12.
Chin J Nat Med ; 21(6): 436-442, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37407174

RESUMO

Tyrosine-decahydrofluorene derivatives are a class of hybrid compounds that integrate the properties of polyketides and nonribosomal peptides. These compounds feature a [6.5.6] tricarbocyclic core and a para-cyclophane ether moiety in their structures and exhibit anti-tumor and anti-microbial activities. In this study, we constructed the biosynthetic pathway of xenoacremones from Xenoacremonium sinensis ML-31 in the Aspergillus nidulans host, resulting in the identification of four novel tyrosine-decahydrofluorene analogs, xenoacremones I-L (1-4), along with two known analogs, xenoacremones A and B. Remarkably, compounds 3 and 4 contained a 12-membered para-cyclophane ring system, which is unprecedented among tyrosine-decahydrofluorene analogs in X. sinensis. The successful reconstruction of the biosynthetic pathway and the discovery of novel analogs demonstrate the utility of heterologous expression strategy for the generation of structurally diverse natural products with potential biological activities.


Assuntos
Aspergillus nidulans , Produtos Biológicos , Policetídeos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Produtos Biológicos/metabolismo , Policetídeos/metabolismo , Peptídeos/metabolismo , Vias Biossintéticas , Família Multigênica
13.
PLoS One ; 18(7): e0286271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478074

RESUMO

In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds.


Assuntos
Aspergillus nidulans , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes Homeobox , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética
14.
Fungal Genet Biol ; 167: 103800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146898

RESUMO

In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.


Assuntos
Aspergillus nidulans , Histonas , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Processamento de Proteína Pós-Traducional , Heterocromatina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo
15.
Mol Microbiol ; 119(5): 630-639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024243

RESUMO

There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.


Assuntos
Aspergillus nidulans , Proteínas de Saccharomyces cerevisiae , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos/genética , Ribossomos/metabolismo , Endorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Biol Cell ; 34(7): br9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017489

RESUMO

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus Aspergillus nidulans. However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in A. nidulans. We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Peroxissomos/metabolismo , Vesículas Transportadoras/metabolismo , Endossomos/metabolismo
17.
Sci Rep ; 13(1): 4285, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922566

RESUMO

Conidiation is an important reproductive process in Aspergillus. We previously reported, in A. nidulans, that the deletion of a putative glycosyltransferase gene, rseA/cpsA, causes an increase in the production of extracellular hydrolases and a severe reduction in conidiation. The aim of this study was to obtain novel genetic factors involved in the repression of conidiation in the rseA deletion mutant. We isolated mutants in which the rseA deletion mutant conidiation defect is suppressed and performed a comparative genomic analysis of these mutants. A gene encoding a putative transcription factor was identified as the associated candidate causative gene. The candidate gene was designated as srdA (suppressor gene for the conidiation defect of the rseA deletion mutant). The conidiation efficiency of the rseAsrdA double-deletion mutant was increased. Introduction of wild-type srdA into the suppressor mutants caused a conidiation defect similar to that of the rseA deletion mutant. Notably, the conidiation efficiencies of the rseAsrdA double-deletion and srdA single-deletion mutants were higher than that of the wild-type strain. These results indicate that srdA is a novel genetic factor that strongly represses conidiation of the rseA deletion mutant, and a putative transcriptional regulator, SrdA is a negative regulator of conidiation in A. nidulans.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Deleção de Genes
18.
Org Biomol Chem ; 21(17): 3552-3556, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807630

RESUMO

The hydroxyl groups in the amino acid residues of echinocandin B were related to the biological activity, the instability, and the drug resistance. The modification of hydroxyl groups was expected to obtain the new lead compounds for next generation of echinocandin drug development. In this work one method for heterologous production of the tetradeoxy echinocandin was achieved. A reconstructed biosynthetic gene cluster for tetradeoxy echinocandins composed of ecdA/I/K and htyE was designed and successfully hetero-expressed in Aspergillus nidulans. The target product of echinocandin E (1) together with one unexpected derivative echinocandin F (2), were isolated from the fermentation culture of engineered strain. Both of compounds were unreported echinocandin derivatives and the structures were identified on the basis of mass and NMR spectral data analysis. Compared with echinocandin B, echinocandin E demonstrated superior stability and comparable antifungal activity.


Assuntos
Aspergillus nidulans , Equinocandinas , Equinocandinas/farmacologia , Equinocandinas/química , Equinocandinas/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Família Multigênica , Aminoácidos/metabolismo , Testes de Sensibilidade Microbiana
19.
Appl Microbiol Biotechnol ; 107(4): 1177-1188, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648527

RESUMO

Physcion is one of natural anthraquinones, registered as a novel plant-derived fungicide due to its excellent prevention of plant disease. However, the current production of physcion via plant extraction limits its yield promotion and application. Here, a pair of polyketide synthases (PKS) in emodin biosynthesis were used as probes to mining the potential O-methyltransferase (OMT) responsible for physcion biosynthesis. Further refinement using the phylogenetic analysis of the mined OMTs revealed a distinct OMT (AcOMT) with the ability of transferring a methyl group to C-6 hydroxyl of emodin to form physcion. Through introducing AcOMT, we successfully obtained the de novo production of physcion in Aspergillus nidulans. The physcion biosynthetic pathway was further rationally engineered by expressing the decarboxylase genes from different fungi. Finally, the titer of physcion reached to 64.6 mg/L in shake-flask fermentation through enhancing S-adenosylmethionine supply. Our work provides a native O-methyltransferase for physcion biosynthesis and lays the foundation for further improving the production of physcion via a sustainable route. KEY POINTS: • Genome mining of the native O-methyltransferase responsible for physcion biosynthesis • De novo biosynthesis of physcion in the engineered Aspergillus nidulans • Providing an alternative way to produce plant-derived fungicide physcion.


Assuntos
Aspergillus nidulans , Emodina , Fungicidas Industriais , Emodina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Metiltransferases/genética , Fungicidas Industriais/metabolismo , Filogenia
20.
PLoS Biol ; 21(1): e3001981, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649360

RESUMO

Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.


Assuntos
Aspergillus nidulans , Hifas , Vesículas Secretórias/metabolismo , Aspergillus nidulans/metabolismo , Parede Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...